Biological clocks and rhythms in intertidal crustaceans.
نویسندگان
چکیده
Animals with habitats within the intertidal zone are exposed to environmental cycles that include the ebb and flow of tidal waters, changes in tidal levels associated with the lunar month, the light-dark cycle and the alternation of seasons. This intricate temporal environment results in the selection of biological timing systems with endogenous clocks that can oscillate with this wide range of periodicities. Whereas great progress has been made in our understanding of the molecular and neural bases of circadian rhythms, that is, endogenous rhythms synchronized to the solar day, there is little understanding on how circatidal rhythms, namely endogenous rhythms synchronized to tides, are generated. Intertidal crustaceans have been a pivotal group for the demonstration of the endogenous nature of circatidal rhythms and their mechanisms of entrainment. We review here some of the classic work using intertidal crustaceans to unmask basic properties of circatidal systems, as well as work from our laboratory that aims to identify putative chemical signals that could be involved in the circatidal systems of decapod crustaceans.
منابع مشابه
Biological Clocks: Riding the Tides
Animals with habitats in the intertidal zone often display biological rhythms that coordinate with both the tidal and the daily environmental cycles. Two recent studies show that the molecular components of the biological clocks mediating tidal rhythms are likely different from the phylogenetically conserved components that mediate circadian (daily) rhythms.
متن کاملEffects of Lycium barbarum. polysaccharide on type 2 diabetes mellitus rats by regulating biological rhythms
Objective(s): Type 2 diabetes mellitus (T2DM) is associated with circadian disruption. Our previous experimental results have showed that dietary Lycium barbarum. polysaccharide (LBP-4a) exhibited hypoglycemic and improving insulin resistance (IR) activities. This study was to explore the mechanisms of LBP-4a for improving hyperglycemia and IR by regulating biological rhythms in T2DM rats. Mat...
متن کاملDissociation of Circadian and Circatidal Timekeeping in the Marine Crustacean Eurydice pulchra
BACKGROUND Tidal (12.4 hr) cycles of behavior and physiology adapt intertidal organisms to temporally complex coastal environments, yet their underlying mechanism is unknown. However, the very existence of an independent "circatidal" clock has been disputed, and it has been argued that tidal rhythms arise as a submultiple of a circadian clock, operating in dual oscillators whose outputs are hel...
متن کاملROS signaling pathways and biological rhythms: perspectives in crustaceans.
This work reviews concepts regarding the endogenous circadian clock and the relationship between oxidative stress (OS), light and entrainment in different organisms including crustaceans, particularly crayfish. In the first section, the molecular control of circadian rhythms in invertebrates, particularly in Drosophila, is reviewed, and this model is contrasted with recent reports on the circad...
متن کاملAdaptive Significance of Circadian Rhythms Biological Clocks and Darwinian Fitness in Cyanobacteria
Many physiological and behavioural processes within living organisms are rhythmic, and occur with periodicities of about a day; such biological rhythms are referred to as circadian (from the Latin words circa = about, dies = day). Other such rhythmic physiological and behavioural processes show periodicities of about a month (circalunar), or about a year (circannual). The periodicities of these...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience
دوره 2 شماره
صفحات -
تاریخ انتشار 2010